Faa' di Bruno's formula, lattices, and partitions

نویسندگان

  • Luis Hernández Encinas
  • Ángel Martín del Rey
  • Jaime Muñoz Masqué
چکیده

The coefficients of g(s) in expanding the rth derivative of the composite function g ◦ f by Faà di Bruno’s formula, is determined by a Diophantine linear system, which is proved to be equivalent to the problem of enumerating partitions of a finite set of integers attached to r and s canonically. © 2005 Elsevier B.V. All rights reserved. MSC: primary 11D04; secondary 05A17; 11D45; 11Y50; 15A36; 68R05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some extensions of Faà di Bruno's formula with divided differences

Keywords: Bell polynomial Divided difference Faà di Bruno's formula Multicomposite function a b s t r a c t The well-known formula of Faà di Bruno's for higher derivatives of a composite function has played an important role in combinatorics. In this paper we generalize the divided difference form of Faà di Bruno's formula and give an explicit formula for the n-th divided difference of a multic...

متن کامل

On a q-analogue of Faà di Bruno's determinant formula

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Complete Bell polynomial Determinant Faà di Bruno's formula q-analogue a b s t r a c t Faà di Bruno's formula is t...

متن کامل

A discrete Faà di Bruno's formula

We derive a discrete Faà di Bruno’s formula that rules the behaviour of finite differences under composition of functions with vector values and arguments.

متن کامل

Two chain rules for divided differences and Faà di Bruno's formula

In this paper we derive two formulas for divided differences of a function of a function. Both formulas lead to other divided difference formulas, such as reciprocal and quotient rules. The two formulas can also be used to derive Faà di Bruno’s formula and other formulas for higher derivatives of composite functions. We also derive a divided difference version of Faà di Bruno’s determinant form...

متن کامل

A Multivariate Faa Di Bruno Formula with Applications

A multivariate Faa di Bruno formula for computing arbitrary partial derivatives of a function composition is presented. It is shown, by way of a general identity, how such derivatives can also be expressed in the form of an infinite series. Applications to stochastic processes and multivariate cumulants are then delineated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 148  شماره 

صفحات  -

تاریخ انتشار 2005